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Population extinction and survival in a hostile environment
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We study the conditions for extinction and survival of populations living in a patch surrounded by a hostile
environment. We find analytic expressions for the steady states when population dynamics is described by
diffusion and reaction is driven by compensation, depensation, or critical depensation growths. The role of
initial population density is studied, and the complete bifurcation diagrams are constructed and validated

numerically for the three cases studied.
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I. INTRODUCTION

The population dynamics of interacting and dispersing
species have been successfully addressed by reaction-
diffusion equations. The best known case is probably that
given by Fisher’s equation [1], where interactions between
individuals and with the environment are described by a re-
action term of logistic type (compensation growth) while the
transport is typically modeled by a diffusive term. This equa-
tion and its generalizations have been used to determine the
minimum patch size required for survival when the sur-
roundings are hostile [2]. In this case, for a population living
in a linear domain of length L, it is known that it survives or
becomes extinct if L is higher or lower than the Kierstead-
Slobodkin-Skellam (KISS) size [3,4] L.=#\D/r, where D is
the diffusion coefficient and r the reaction rate. The analysis
of the conditions for population survival within a hostile sur-
rounding environment is of interest especially for those sys-
tems lacking internal population regulation, contrary to the
situation studied in Ref. [5]. In a more physical language, a
hostile environment entails the solution of equations in a
finite domain with absorbing boundary conditions, which is
also a common problem in many other fields, such as thermal
processes [6], quantum mechanics [7], etc. Within the con-
text of population dynamics considered here, one can imag-
ine that there is a finite domain (patch) available to the indi-
viduals, but beyond some given point there are constraints
(for instance, the absence of food or activators, the presence
of infrastructures, the exposure to predators) that make life
unsustainable. To relax this assumption, some variations of
the hostile environment problem have been proposed, where
it is considered that the population growth rate decreases
very fast for individuals crossing some given point [8]. Ac-
cording to the interest of the problem, many recent works
have been devoted to finding the KISS size for increasingly
complicated models. For example, the effects of density-
dependent diffusion [9] and convection on the extinction of
bacterial colonies [10-12], nonlocal growth [13,14], extinc-
tion in streams [15,16], and the role of internal fluctuations
[17] have been studied. However, when population growth
exhibits a strong Allee effect (that is, the population density
must be higher than a threshold value in order to increase),
no KISS size exists and a detailed analysis of the steady state
must be performed to find the conditions under which a
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population survives or becomes extinct [18]. In this work we
use the Galerkin truncation method (GTM) to construct the
bifurcation diagram for the maximum population density at
the steady state versus the patch size, and determine the sta-
bility of the corresponding branches to delimit regions for
absolute extinction, absolute survival, or extinction or sur-
vival depending on the initial population density. Here we
study the reaction-diffusion case for a general cubic growth
term and we explore in detail some particular cases of inter-
est: compensation, depensation, and critical depensation (Al-
lee effect) [19]. As the most remarkable result, we find that
the bifurcation diagram found for the depensation case
shows a region where both extinction and survival are pos-
sible (stable) states, even though the growth function is al-
ways positive, in comparison with the case reported in [9].
Our analytical results are also validated by comparison with
numerical solutions.

II. GALERKIN TRUNCATION METHOD

The problem under study is the boundary value problem
(Dirichlet) for the reaction-diffusion equation

a—uzD&Z—Z+rF(u) with u(0,) =u(L,t) =0, (1)

at ox
where u(x,) is the population density, D is the population
diffusion coefficient, r is the constant reaction rate, and the
above boundary conditions define a patch with size L sur-
rounded by a completely hostile environment. The GTM [20]
consists in choosing a basis {¢;(x)} of functions that satisfy
the boundary conditions ¢;(x=0)=¢,(x=L)=0. Seeking a so-
lution of the form u(x,7)=2"_,¢,(1)$,(x) and substituting it
into Eq. (1), one finds a hierarchy of ordinary differential
equations for ¢;(r) after taking the inner product
[5L[u] ¢, (x)dx=0 with m=1,...,0 and L[u]=du—Ddu
—rF(u). Tt is important to point out that ¢,(7) is expected to
be the leading order term in the above expansion. For the
problem (1) we consider ¢,(x)=sin(nmx/L) and the reaction
function

F(u) = ayu + ayu® + azu’. (2)
For compensation growth (logistic) a;=1, a,=-1, and a;

=0; for depensation growth a,=a, a,=1-a, and az=-1, and
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finally for critical depensation growth (strong Allee effect)
a;=-a, a,=1+a, and a;=—1. Neglecting higher-order non-
linear terms (we will justify this approximation below) such

as @1 P2, P1P3y e P2P3, - - -y qo%, ..., we find, after projecting,
do, nar\? ) 5
+| D\ — —ra; ()DnzMn()Dl(t)+Nn¢l(t) (3)
dt L
with
4 (-1)"-1 12 sin(nr)
M,=ray——>—— and N,=ra;

=9 n*-1)"

We must check now the validity of removing the higher-
order nonlinear terms. If ¢, is the leading term, the condition
limqpﬁo ¢,/ ;=0 must be satisfied. When ¢, — 0 the popu-
lation becomes extinct, and this holds in the limit — o (the
population density tends to a steady state) if a; <0 or when
L<L.=w\D/ra, if a;>0. Taking n=1 in Eq. (3), ¢,
~exp{[ra;—D(m/L)*]t} in the limit ¢;—0, and from (3)
with n>1 we have ¢,/¢,~A@+Bg] with s=(n*-1)/[1
—ra,(mw/L)?/D]>0 and A and B the appropriate constants.
Hence, it is clear that lim, o ¢,/ @=lim, _o(A@,+B¢))
=0 and this approximation is even better as t— %, i.e., when
the steady state is reached.

The population density at the steady state is given by
u(x,°)=u,, sin(wx/L), where u,,= ¢;() is the maximum
population density at the steady state for a given patch size
L. This quantity can be computed from Eq. (3) with n=1 and
by considering d¢,/dt— 0 as t— o in Eq. (3). Taking n=1 in
Eq. (3), u,, is found as the real solution to the equation
D(u,,,L)=0 with

nm n—

3ra 8ra \?

®(u,,L) = u,, 3ufn+ 2um+ra,—D(—) . 4)
4 37 L

In summary, the equation for the steady state found from the

GTM is u(x,%)=u,, sin(7x/L) with u,, the nontrivial solu-

tion to ®(u,,,L)=0.

III. BIFURCATION DIAGRAMS

From the point of view of ecology and population dynam-
ics, it is interesting to find the relation between the maximum
population density u,, surviving in a patch of size L. This can
be obtained by solving ®(u,,,L)=0 from Eq. (4). From intu-
ition, one expects that larger patches should have larger u,,.
This is nothing but the stability condition for the possible
branches of the equation ®(u,,,L)=0. This equation posses
the trivial solution u,,=0, which corresponds to population
extinction. Two other possible solutions can be obtained by
making the term in square brackets equal to zero. The main
concern then lies in the conditions that determine the stabil-
ity of the system. The stability analysis can be carried out by
linearizing Eq. (3) with n=1 around each solution, to find
that

u, =0 is stable if ra; — D(w/L)* <0, (5)

i.e., the population becomes extinct, and it is unstable, i.e.,
the population survives, otherwise. Let us denote by ui the
two possible nontrivial solutions,
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FIG. 1. Bifurcation diagram for compensation growth. We have
considered a=0.1 and D=r=1. Solid lines correspond to stable
branches while the dotted line is unstable. Symbols depict numeri-
cal results. The extinction and survival regions are separated by the
vertical dashed line.
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and unstable otherwise. In the bifurcation diagram u,, versus
L we can represent the three possible solutions and indicate
their stability. It is possible that both trivial and nontrivial
solutions coincide in some region of the bifurcation diagram,
that is, for a given value of the patch size there can be up to
three possible values for u, corresponding to stable
branches. In this case the stability will depend on the initial
condition ¢,(0). Let us detail the general results above for
the specific growth functions we consider here.

A. Compensation growth
Compensation growth corresponds to a logistic term
F(u)=u(1-u), which is equivalent to taking a;=1, a,=-1,
and a3=0. In this case, the bifurcation diagram consists of
two possible branches:

(7

u,=0

. 37 ( D’7T2)
and wu,=—\1-—5].
8 rL
From Eq. (5), the trivial solution is stable if L<L.= m\D/r
and the system possesses a KISS size. It is unstable if L
> L.. However, from Eq. (6) the nontrivial solution is always
stable but is present only for L>L.. In Fig. 1 we plot the
resulting bifurcation diagram. The lines in the plot depict the
analytical results given in Eq. (7) and the symbols corre-
spond to the numerical results found. Thick lines corre-
sponds to stable branches while dotted lines are unstable
branches. The regions of extinction (L<L,) and survival
(L>L,) are also marked. Throughout this work we have em-
ployed an explicit finite-difference method, taking a time
step of 107 units, a mesh size of 5X 1072, and D=r=1.
After a time of 90 units, the system reaches the steady state.
It is observed that the analytical results given in Eq. (4) are
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FIG. 2. (a) Bifurcation diagram for depensation growth. We
have considered a=0.1 and D=r=1. Solid lines correspond to
stable branches while the dotted lines are unstable. Symbols depict
numerical results. The extinction, relative extinction or survival,
and survival regions are separated by vertical dashed lines. (b) Plot
of the critical initial density versus the patch size for the relative
extinction or survival region.

in good agreement with the numerical solution except when
u,, is close to 1. This is due to the fact that the condition
lim‘pl_,o ¢,/ ¢1=0 fails and the nonlinear terms removed in
our analysis become important.

B. Depensation growth

Here F(u)=u(1-u)(u+a) with 0<a=1, corresponding
to taking a;=a, a,=1-a, and a;=—1. As far as we know,
this case has not been explored before from the perspective
of the hostile environment problem. From Eq. (4) we can
find the three possible branches

. 16(1-a)
u

u,=0 and u,= o g\r (L) (8)
where
2 2
A(L)—64(1772) 3 {1—(%)} and L _17\/;
)

In this case there exists a KISS size. The nontrivial branches
collide at the bifurcation point which has the following co-
ordinates in the diagram:
. 16(l—a) . L.
u,=——— and L' = .
97 V1 +64(1 - a)?*27a7*

From Eq. (5), the trivial solution is stable if L<<L. with L,
given in Eq. (9); otherwise it is unstable. From Eq (6), the
stability for the nontrivial branches requires ut > 16(1
—a)/97 which is only satisfied by u,; then we have that u;,

is stable and u;, is unstable. In Fig. 2(a) we represent the
bifurcation diagram in this case. The curves are computed
from Eq. (8) and the symbols correspond to the numerical
solutions. For L<<L. there is only the trivial solution and the
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population always becomes extinct (absolute extinction). It is
very interesting to observe that within the region L*<L
<L, both u,,=0 and u;, are stable branches. The system se-
lects one of them, i.e., the population becomes extinct or
survives, depending on the value of the initial condition. We
stress that this behavior (called here relative extinction or
survival) has not been reported before to our knowledge for
any strictly positive growth function F(u). Finally, for L
> L, only u, is stable and the population survives indepen-
dently of the initial condition (absolute survival).

In the phase diagram d¢,/dt versus ¢y, u,, is a repellor
while u,,=0 and u are attractors. This means that if the
initial condition lies between O and u,, the stable branch is
u,,=0; otherwise u+ is the stable branch. In summary, there
exists a critical 1n1t1a1 condition, namely, ¢,(0)=u,,, such that
for ¢;(0) < ¢[(0) the population becomes extinct while for
®1(0)> ¢;(0) it survives. u;, plays the role of the separatrix
between the attraction basins of the states u,,=0 and u;,. We
have plotted this result in Fig. 2(b), where we also compare
it with the numerical solutions computed by considering
u(x,0)=¢,(0)sin(m7x/L). By fixing the parameter values and
varying ¢,(0) from 1 to 0, we have detected the value at
which the steady state collapses to 0. As we can see in Fig.
2(b), the critical value of the initial condition ¢;(0) decreases
as L increases, as one would expect intuitively.

C. Critical depensation growth

Here we consider the case of a strong Allee effect. For
this purpose, we consider as usual a growth term of the type
F(u)=u(1-u)(u—a) with 0<a<1/2, which corresponds to
a;=-a, a,=1+a, and az=-1. This case was already ex-
plored in Ref. [9] but the analysis performed here is more
detailed and corrects some of the discussion given there. The
three branches for the corresponding bifurcation diagram are

L 16(1 +
=0 and u, = M

ITl m

A(L) (10)

an
with
A(L) = 64(1 + a)*/97° - 3a[ 1 + D(@/L)*/ra].

The coordinates of the bifurcation point are

_
D 3\3

and L*=7T2\/j , - .
r \64(1 +a)* - 27am

The trivial steady state satisfies the stability condition (5) for
any L. From Eq. (6), u;, is stable and u,, is unstable as in the
depensation growth case. Moreover, for 0<L<L" only the
trivial solution exists and the population becomes extinct.
However, there is an important difference: here there is no
KISS size and in consequence, the relative extinction or sur-
vival region is extended indefinitely for L>L", so there is no
absolute survival region. In Fig. 3(a) we plot the correspond-
ing bifurcation diagram. Figure 3(b) corresponds, as in pre-
vious cases, to the critical initial condition ¢{(0)=u;, with u,
given in Eq. (10). In comparison with the discussion in Ref.
[9], here we show that the reason for the stability of the

. 16(1 +a)

mT 9
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FIG. 3. The same as Fig. 2 but for critical depensation
growth.

extinction state is not simply given by the fact that the
growth term F(u) is negative for low values of the density u,
since the unstable branch is given by the value u,, and not by
the Allee parameter a. Indeed, we have shown (depensation
case) that even for a strictly positive function F(u) a region
of relative survival or extinction is possible.

IV. CONCLUSIONS

The conditions for survival and extinction of a population
living in a patch surrounded by a hostile environment have
been investigated in terms of the patch size and growth pa-
rameters. We have analyzed in detail the steady states emerg-
ing from populations diffusing and growing according to
compensation, depensation, and critical depensation models.
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By means of the GTM, we have been able to find their sta-
bility regions, and, as a consequence, the regions of extinc-
tion and survival in bifurcation diagrams. For compensation
growth, the population becomes extinct if the patch size is
below the KISS size and survives otherwise, independently
of the initial conditions. For depensation and critical depen-
sation, we have investigated in detail the role of the initial
conditions for the population density in the extinction and
survival conditions, generalizing previous research [9]. Ac-
cording to the results found here, for those cases where the
population growth rate is very low (depensation) or even
negative (critical depensation) at low densities, this early
growth strongly limits the dynamics of the whole system, so
the initial population density plays a critical role in the future
survival or extinction. We have provided exact analytic ex-
pressions for the critical initial density and have seen how
this expression equals the unstable nontrivial solution.

The contributions provided by the present study are (i) the
application of the Galerkin method as a powerful mathemati-
cal framework for the study of hostile surrounding environ-
ments, (ii) the representation of the survival or extinction
dynamics by means of bifurcation diagrams which include
the unstable branch separating the survival basin from the
extinction basin, and (iii) the analysis of a case (depensation
and critical depensation) which exhibits a region (relative
survival or extinction) not completely described in previous
work.
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